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A uniform semiclassical approximation to bound-continuum Franck-Condon 
factors is derived by applying differential topological mapping techniques on a 
suitable three dimensional integralrepresentation. This approach even holds 
uniformly if two potentialcurve intersections (real or complex conjugate) and 
two turning points come close or coincide. The resulting Franck-Condon 
matrix element is expressed in terms of two generic swallowtail (A4) integrals 
whose unfolding parameters are obtained from a single algebraic equation 
amenable to fast standard routines. Transitional approximations to this result 
are shown to cover all previously known approaches and to lead to a general- 
ization of a formula of K. Sando and F. H. Mies [1]. A simple and fast 
trapezoidal method to evaluate the generic swallowtail integrals and other 
generic integrals of odd determinacy is presented, which even permits the 
derivation of numerical error bounds. 

Key words: Bound-continuum Franck-Condon factors - Semiclassical matrix 
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1. Introduction 

On page 152 of Ref. [3] a sequel was promised which would offer a completely 
uniform treatment of bound-continuum Franck-Condon (FC) integrals with two 
real or complex conjugate crossings which may come close or coincide with two of 
the three turning points. The underlying publication presents the solution of this 
problem. It is presented in terms of swallowtail (SWT) integrals whose need has 
been foreboded in Ref. [3]. 
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SWT integrals are generalized Airy-type integrals with a quintic integration 
variable polynom in the exponent.  This solution however would only be a formal 
one of little practical value, if we had not found a method for calulating SWT 
integrals by an as fast and simple numerical routine as nowadays Airy functions 
can be evaluated. There is another improvement over Ref. [3] which deserves 
being mentioned. In Ref. [3] the bound state functions have been approached by 
matching two Airy uniform Langer functions at the midphase point. Here  we 
employ integral representations for harmonic oscillator states which allow making 
use of the two turning point uniform vibrational functions of Ref. [2] in the FC 
integral (25) of Ref. [3]. If one thinks of applying multidimensional saddlepoint 
methods this improvement is the crucial point since it is not obvious how to 
continue the matching procedure into the complex plane. 

The plan of this paper is as follows: 
In Sect. 2 we derive the above mentioned integral representions for the vibra- 
tional functions. 

In Sect. 3 the FC integral composed of Mil ler-Good vibrational functions and 
Airy uniform continuum functions is converted to a three dimensional one and 
after exploiting its differential topological structure it is asymptotically mapped on 
generic or canonical SWT integrals. The mapping equations which determine the 
unfolding parameters of the SWT integrals are decoupled and brought into a form 
suitable for a fast numerical solution. 

In Sect. 4 two transitional approximations for the SWT integrals are derived. One 
leads back to the partially uniform treatment in Ref. [3] and the other provides a 
generalization of formula (A-25) of K. Sando and F. H. Mies in Ref. [1]. 

Sect. 5 offers a simple and fast numerical method for calculating SWT integrals 
and other generic integrals of an odd determinacy like wigwam A6, hyperbolic 
umbilics D4, D~4 etc. Error  formulae are given which allow to predict the size of 
the integration meshs necessary to obtain any desired accuracy. 

Finally, in Sect. 6 we collect transitional approximation formulae for the intensi- 
ties of the various caustics that may occur in bound-continuum FC factors through 
the coincidence of two or more critical points. We also show plots of the 
corresponding intensity patterns or spectra. 

2. Integral Representations for Harmonic Oscillator States 

In this section we derive for the harmonic oscillator functions 

xn(q) = e-q2/2Hn(q)qr-1/e2-'~/2(n [)-1/2, n = 0, 1, 2 . . . .  

normalized according to 

§  

I_ dqx2(q)1  
o o  

(1) 

(2) 
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integral representations which form the basis of stationary phase or saddlepoint 
mapping techniques applied in Sect. 3. A representation of this kind valid for 
positive values of q has been published by M. S. Child and P. M. Hunt in the 
appendix of Ref. [4]. Here we need representations w. hich are valid on the whole 
real q-axis and not only on its positive part. We shall see, that this requirement 
necessitates to distinguish between even and odd vibrational quantum numbers 
according to the parity of the functions (1). 

We start from Eqs. 

H2k(q) = (--1)k22kk !L(-1/2)(q2), (3) 

H2k+,(q) = (-1)~22k+'kIqL~'/2)(qZ), k = 0, 1, 2 . . . .  (4) 

and 

= y - ~ e y  d k (yk+~e-y) 
L(k")(Y) k! ~yk (5) 

on pp. 240-241 of Ref. [5]. Cauchy's formula for the k-th derivative 

d k k! Iv d z f ( z )  
dy '~ f(Y) = 2~r----~ (y) (z-y)k+~'  

where the integration path y(y) is a zero-homologous, positively oriented cycle 
enclosing the point z = y, and the linear map z ~ t = i (2 z / y  - 1) then yield 

(--1)keY/2 f dte(i/2)yt(1-it)  k+" 
L~")(Y) 2~2~r -v(i) (1 +it)  k+' (6) 

The contour deformation y(i) ~ -oo <_ t <- +oo and 1 + it = e;8 1,/i~-~ with 

tg 8 = t (7) 

then leads to the integral representation 

( - - 1 ) k  e y /2  i +co eif(y/2)t-(Zk+l+a)8(t)] 

L(~)(y) ~ - 2 ~  j_~ dt (l+ta)~(l_,) , (8) 

which is ideally suited for deriving various uniform asymptotic approximations via 
stationary phase mappings. 

Inserting (8) into (3), (4) and (1), we find the desired integral representations valid 
on the whole real q-axis 

[,-~ - -  t \ 1 / 4  ,, +co (i/2)[qZt--(2n+l)B(t)] 
/ ~ Z n t l )  ~ n  / . d I---G--- e t a ,  

.u ( q )  = / / . . . .  - 1 / 4  . +co (i/2)[qZt--(2n+l)8(t)] 
f t z n * •  J qe  
[ j_coat . ,  

where 

o~n = 2("+a)/2F(1+2) (n,)-1/2(2n + 1)-1/47r -1/4 

for n = 2k 

k = 0 , 1 , 2  . . . .  

for n = 2 k + 1 ,  

(9) 

(10) 
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Table 1. The coefficients a, in Eq. (10) 

n 0 1 2 3 4 oo 

~, 1.0623 1.0116 1.0046 1.0024 1.0015 1.0000 

and 8(t) is defined by (7). A simple calculation with a pocket computer yields 
Table 1 for the coefficients a ,  in Eq. (10). 

We note, that we safely may replace Eq. (10) by the approximation 

~ , ~ i .  (11) 

Now it is straightforward to write down integral representations for the continuum 
functions (23) and the normalized Mil ler-Good vibrational functions (1)-(6) of 
Ref. [2]. Since these expressions are basic to all further approximations, we enlist 
them here for convenience. 

The energy normalized continuum functions are 

OE2(x) = ~ -  z'(x)-l/z(2~r) -1 dte it(t3/3~-z(*~t~ (12) 

2m- E z'(x)2z(x)=--h:-I_ 2 -  V2(x)], z(x3) = o, V2(x3)=E> (13) 

The normalized Mil ler-Good vibrational functions are 

= m , q'(x)-l/2xn(q(x)), n = 0 , 1 , 2  . . . .  (14) g,.(x) (-~E~(n)) 1/2 

2m 
q'(x)Z[2n + 1 - q2(x)] = -h-T [El (n) - Vl(x)], q(xa,2) = q: (2n + 1) 1/2, 

Vl(xl,2) = El(n),  xl < x2. (15) 

We define 

ki(x) = --~-[Ei-V,(x)] ,  i = 1 , 2  (16) 

and 

ui(x) = -k i (x)  z (17) 

such that Eq. (4) of Ref. [2] which supplements (15) now is 

fx xz kl(x) = 7r(n kl(Xl.2) ~--" 0,  X1 < X 2 .  +�89 dx (18) 
1 

It is interesting to note that if the X, in (14) are replaced by their Airy uniform 
approximation to (9), and (11) is used, one just obtains the simplified version r of 
Miller's boundstate functions at the end of Sect. 2 in Ref. [3]. Thus, the use of (9) 
in FC integrals avoids the matching problem mentionned in the introduction. 



Franck-Condon Factors Valid at 4 Coinciding Critical Points 101 

3. Asymptotical Reduction of the FC Integral to SWT Form 

From (14), (12) and (9) we note that the FC integral for a bound continuum 
transition with a transition moment/z(t3) (electronic moment, r-centroid etc.) 

P 

= I dt3 ~n(t3)lz(t3)&e2(t3) M (19) 
d-- co 

can be approximated within percent accuracy by the three dimensional integral 

M .+oo f+OOdt2+oo t3) e i*(q't2"t3~ 
~--J-oo dtx _ f-oo dt3p(tl, t2, (20) 

with the phase function 

(I)  = (I)  1 + ( I )2 ,  (21) 

�9 1 = ~[ t lq( t3)  2 -  (2n + 1)a(tl)] = ~1(tl ,  t3) (22) 

dO2 = -~ -  z( t3)t2 = qbg(t2, t3). (23) 

The stationary points of qb follow from the three Eqs. 

0~1 
= O, (24) 

Otl 

0~2 
= 0, (25) 

0t2 

a~ 0~l+ad#2 = 0. (26) 
Ot3 Ot3 Ot3 

With (7), (13), (15) and (17) we obtain 

q (t3)2(1 + tl 2) = 2n + 1 

t~ = z (ta) (27) 

tlq (t3)q'(t3) = t2z '(t3) 

and hence 

Ul(t3)----- u2(t3), (28) 

i.e. the Mulliken condition (see also Eq. (33) in Ref. [3]) 

V1 (t3) - El(n)  = W2(t3) - E2. (29) 

From (27) we infer that the number of stationary points is twice the number of 
solutions of (29), i.e. twice the number of crossings. Henceforth we assume that there 
are two real or complex conjugate crossings at t3 = x~ and t3 = xb. 
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Next we determine the values of the phase ~ at such a stationary point t3. From 
(27), (22) and (7) we find for any solution t3 of Eq. (29) 

1"92 2 n/~--+ 1 
$i(t3) = qb1(h(t3), t 3 ) - - ~ G V  

q 
cosS= 2n+1 '  q=q(t3). 

Note that S~ is an even function of q 

- - -  i -(,, +�89 } 
(30) 

It is evident, that Sl(q) can be written as an action integral. In order to do so, we 
form the derivative 

dS1 1 dS1 1 (0"1 dtl +OdPl] 
dq - q'(t3) dt3 - q'(t3) \ Oh dt3 Ot31 = qtl 

and with the help of Eq. (30), Sl(q = O) = ~Tr/2(n +�89 and (27) we find 

[ Sl(q) = ~: (n +�89 dpp 2 1. (32) 

Defining the midphase point Xo as in Ref. [3], Eq. (7) by 

Ix x~ Ix x2 ~'(n +�89 (33) dx kl(x) = dx kl(x) = 
1 0 

and changing to the integration variable x in Eqs. (15) and (18), the integral in 
Eq. (32) becomes 

for t3_<Xo 

Sl(t3) =l•  ii~ (34) 
dx kl(x) for Xo<-t3. 

This means, that the integration path always goes to (or comes from) that turning 
point xl, x2 which is situated at the same side of Xo as t3 is. 

Repeating this discussion once more with Eqs. (27), (23) and (13), we find 

$2(t3) = (I~2(t2(t3), t3) = -~z(t3)t2(t3)= :t:fx ] dx k2(x). (35) 

The relative sign of $1 and $2 in the phase dp at any stationary point with a crossing 
value t3 

S(t3) = qb(h(t3), t2(t3), t3)= Sl(t3)+ $2(t3), (36) 

is fixed by Eqs. (24)-(26) according to dS/dt3 = 0, such that we finally obtain 

I? I? S(t3) = dx k l ( x ) -  dx k2(x). (37) 
1 2  3 

Sl ( -q)  = S~(q). (31) 
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The absolute sign in Eq. (37) is unimportant since, as we shall see, the unfolding 
parameters of the SWT integrals depend on S(t3) 2 only. The symbol Xa2 in Eq. (37) 
expresses in shorthand notation the choice of the integration path in Eq. (34) and 
its obvious continuation through x0 into the complex x-plane. 

There are additional differential topological properties of the phase function (21) 
which are of importance if one wishes to derive uniform asymptotic approxima- 
tions for the integral (20). These properties can be gathered from the matrix of the 
second derivatives, i.e. the Hessian matrix, 

82qb 
~ k  = ati atk' i, k = 1, 2, 3, (38) 

at the stationary or critical points of @ and from higher derivative forms, see 
Ref. [6] Chapts. 4 and 8. From Eqs. (21)-(28) we obtain at a stationary point with 
the crossing value t3 the Hessian matrix 

( t lq4 / (~n+l )  O qq' 

I-Iik = 2tlqq' /z '  - z '  = ~ ,  (39) 

\ qq' - z '  hz '(qq'/z ') ' /  

where q' = dq/dt3, z' = dz/dt3. Recallings Eqs. (13), (15) and the first Eq. in (27) 
we note that h vanishes at the bound state turning points t3 = x1 or t3 - ~  x2. Thus, 
the rank of (39) drops there from its maximal value 3 to the value 2. It cannot 
decrease below the value 2, because z'  in Eq. (12) is always positive. This means: 
the corank = 3-rank is always less or equal 1, viz. 

cor (~) -< 1. (40) 

Therefore, according to the splitting lemma (see Ref. [6], pp. 61) the phase 
function (21) can always be unfolded, modulo a Morse function, within the cuspoid 
family (see Ref. [6], p. 154, Table 8.1 and pp. 166). Now, all what remains is to 
find the determinacy of q), cr (qb). The codimension of qb then is anyway fixed in the 
cuspoid family. Again, since cor (~) _< 1, the determinacy r is uniquely related 
to the number of stationary points. If there are k crossings and hence 2k 
stationary points we have 

o-(qb) = 2k + 1. (41) 

We henceforth consider 2 crossings only. Then qb in Eqs. (21)-(23) is strongly 
equivalent via a complex diffeomorphism (holomorphic map), see Ref. [7], to the  
universal unfolding 

qb = qb(tl, tz, t3) = qb(tl, t2, t3) = i(t-~ + i'~) +f(t) (42) 

f ( t )  = ts+ f3 t 3 +/2 t 2 
5 3 2 +fl t+fo.  (43) 

From (43) we note the codimension 3 (without f0) and for k crossings cod (qb) = 
2k - 1 in general. 
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A further reduction of the number of unfolding parameters f~, i = 0 . . . . .  3 follows 
if we recall Eqs. (21)-(23). The phase function ~ has the symmetry 

O(--tx, --t2, t3)= -qb(h, t2, t3). (44) 

That is why the stationary points (27) occur in pairs which give rise to the + signs 
in Eqs. (31)-(35). The mapping (42) deforms the symmetry (44) into 

f ( - t )  = - f ( t )  (45) 

which implies 

f2 = f0 = 0 (46) 

in Eq. (43). A similar case of codimension reduction by symmetry has been 
discussed in Chap. 14, Sect. 15 of Ref. [6]. 

If we reparametrize f3 and f~ according to 

_ f 3 = t ] + t ~ ,  f l  = 2 2 t J b ,  (47) 

the stationary point of ~ in (42) are determined by 

t-1 = i2 = 0, f ' ( t )  = 0, (48) 

which yields 

t ~ 2 = t,,b. (49) 

Conditions which fix the unfolding parameters t~, tb in (47) are found by writing 
down Eq. (42) at the corresponding stationary values of the variables t~ and the 
transformed variables ti, t. With Eqs. (49), (48), (43), (42), (37) and (36) we obtain 

S(Xa) ~ Sa = f(t~) = ~ t 3 ( 5 t ~  - t])  ] 

S(Xb) ---- Sb = f( tb) = 2 t 3  (5t~ - fi,),J > (50) 

Or 

15~$2~ b ~: Sa) = (ta q: tb)3[3tatb • (t2a + t 2)]. (51) 

The smooth parameter change 

t2 + t] = 20.47(1+ oJ) ,  o -=+1,  t ~ - t ] = 2 4 ~  (52) 

and several straightforward algebraic manipulations then lead to the "solution" 
. 2 0- =sign (Sa +82),  (53) 

3 + 2 lx~--~w \ 2/~/~ + ~/1---~w~ 3 _ 2S 2 
h+(w) ~ o93 ( 

,34Z+2 1,/iT-dJ J (sb-so) 

- O l ,  Sa <- Sb (54) 

or 

oJ 3(4w - 5) 2 4S 2~ 
2 .oOb_s )2= o h_(w) = (55) 
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and 

225(s _  s]) 
r = 32(4-5o) )  sign (Sb 2 - $ 1 ) .  (56) 

The rea l  mapping to--) h_(to), Eq. (55), is bijective (smooth) for - o 0 _ o ) - < 0 .  
Hence, Eq. (55) has for -o0 _~ Q ___ 0 a unique real solution which is bounded by 

-]O11/3(1~)a/3~o~ ~-tQ11/3(~-6) a/3, for 0 ~ 0 .  (57) 

Therefore it is easy to calculate co for O-<0  from (55) with the help of any 
standard routine just starting with the bounds (57). E.g. inverse quadratic 
interpolation may be applied. This procedure converges very fast since the bounds 
(57) are rather narrow. If however O in Eq. (55) is positive, to is uniquely defined 
by Eq. (54). In this case the inhomogeneity O1 in (54) is positive and we find the 
bounds 

(25hl /3 r -~  1/3 ~.. j / 3 2 x l / 3  r ~ 1 / 3  
~ ]  ~,~1 ~ (-0 ~'~ t ~ )  1,~1 , f o r  0--< O .  (58) 

Again, Eq. (54) is easily solved by the above mentioned standard routines. We 
may assume henceforth, that the unfolding parameters 2 ta,b are known from Eqs. 
(56), (53) and (52). 

m 
In order to write the integral (20) in the new variables tl, t2, t in Eq. (42), we need 
the Jacobian J of this transform. At the stationary points J is simply related to the 
Hessian determinant of {I} in the variables t~, i = 1, 2, 3, H = det (W), Eq. (39), and 
the Hessian de terminant /4  of qb in the variables tl, &, t, viz. 

/4 ={r (59) 

(see p. 16 in Ref. [8]). From Eqs. (42)-(49) and from (39), (28), (27) we find 

j 4  [0(&, t2, 8 ) ]  4 64t2(t 2 - t ] ) z z ' z ( 2 n + l )  2 

t z 2 -= ta,b, t3 ~ Xa, Xb. 

2 8 t  r taq I , / / 2 - u ~ )  2 

(60) 

Note that at a coincidence of a turning point and a crossing point, tz,b ~ 0, the 
vanishing of t 2 in the numerator is compensated by the vanishing of t~ in 
the denominator. Similary, if the two crossings Xa, Xb coincide, then t ] --t~, 

�9 , 2 and the vamshlng of (tb -- t]) 2 is compensated by (u;_ - u~ )2. The same regularity 
of J holds of course if both coincidences occur simultaneously. 

Now we are prepared to derive the l e a d i n g  uniform asymptotic contribution to the 
integral M, Eq. (20). Following theorem 9.1. on p. 457 in Ref. [9] we expand the 
transformed integrand Eq. (20), J p  e i6, at the stationary values t 2 = t2a,b according 
to 

J p  e ie~ ~- (Co + c2t 2) e ic~ (61) 
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and the leading asymptotic contribution to M is 
+CO +00 +CO 

M = I _  d71f_  d/-2 i dt (co+cz t2 )  e iaa (62, 
oo o0 oo 

A term Clt has been omitted in Eq. (61) because JO turns out to be even in t. At 
t 2 = t~ we obtain 

Co + c2t 2 = CaPa (63) 

and t 2 = t~ yields 

Co + c2t~ = JbPO, (64) 

with the solution 

paJat~ -- pb~bt2a Pb~b -- P , ~  
= c2 = 2 (65) co t --t a ' 

Besides our anticipation that 0 is an even function of t, the explicit form of p in 
Eq. (20) was not necessary up to now. Inspection of (65) shows that for the leading 
asymptotic contribution (62) it is sufficient to calculate P at the stationary points as 
it is indicated by the subscripts a and b. 

Going from Eq. (19) back to Eqs. (14), (12), (11), and (9) we find that at a 
stationary point with the crossing values t3 = Xa, Xb, the function 0 is given by 

e v e n  
m , 2)1/4 P = ~ (2E1 (n)) l /2(27r)-Zq'- l /2z ' - l /2  (2n + 1) 1/2/x q for n = odd 

(66) 

Eq. (62) is the uniform asymptotic approximation to the FC integral (19) which we 
intended to derive. Its detailed form follows from (66), (65), (60), (15) and (13). 
We obtain 

M ~ - ( t ~  2 -1 2 2 - ybta)Fo+ (Vb --t.) [(y.tb -ya)F2], (67) 

where 
2 2 2 1 /4  

2 m  E "  ,,~/2 ~ ,. ,[ ta.b(tb--ta) ] 
Ya ,b '~ ' ' -~ ' - (  l~ ,n ) )  ~  z .  ~-7-77-/~"( - - ,  . . . .  2~ , 

t K 1,2 IJ3)L/g 2 ~.lr3) - -  U 1 t~'3)J J 

q(t3) 
Oeq --  ~ 

and F0, F2 are the SWT integrals 

1 [+oo 
F2k =~--~ j_oo dttZkeif(t'~, k =0,  1 

t 5 t 3 

ttatb. f ( t ) = ~ _ ~ ( t 2  + t~ )+  2 2 

t 3 ~ Xa, Xb, 

(68) 

(69) 

(70) 

(71) 
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We conclude this section with the remark that by construction the approximation 
(67) holds uniformly if one or two turning points coincide with one or two 
crossings. This can explicitly be seen in Eq. (68). A zero of k~,2 is compensated 

2 by a zero of G,b, the coincidence of the two crossings x , ,  Xb leads to a zero of 
u~ - u ~, which is compensated by t~ - t]. A further important property of Eq. (67) 
is, that it is symmetric with respect to the exchange of the subscripts a and b. 

4. Transitional Approximations 

One type of transitional approximation to (70) is obtained if the integration 
domain is split into two components @a and @b. In each of the subdomains @a and 
~b we apply to (71) one of the two mappings 

3 
S 

f ( t )  = ga.b(S) = ~ - -  fl a,bS. (72) 

The unfolding parameter/3a is determined by putting in @a 

f ( •  t,) = ga ( + ~/~-~) (73) 

and fib is determined by putting 

f (a: tb)  = gb(+ ' f~b)  (74) 

in @b. With (50) we obtain from (73) and (74) 
/ 3 2  ~ 2 1 : , 2  9 2 

= ta( tb  - -3 ta)  = ~Sa (75) 
~ 3  6 2 1 .2 ,2  9 2 

= tb (t~ -- ~rO) = ~Sb. (76) 

Expressing the Jacobians in @~,b with the help of the analog of Eq. (59) in terms of 
the second derivatives of f ( t )  and g,,b (s), we find for (70) the leading asymptotic 
approximation 

[ ~a ] 1/4 t~k[ fib ] 1/4 
F2k ~--t] k t a ( t a - t b )  t ~ ( t ~ - - t ] ) J  d i  (--fib).  (77) 

If this transitional approximation, which is uniform for ta ~ 0 and tb # 0 or tb --~ 0 
and ta # 0, is applied in Eqs. (67) and (68), we rediscover Eq. (50) in Ref, [3], viz. 

2m , ] 1/4 
M - ~ _ ~  b -~ - (E l  (n)) 1/2/z (xs)o'~[,2 . . . .  /3~ LK1,2(Xs)(LI2(Xs)__U~(Xs))2 J s~i(--~s ) ( 7 8 )  

~ 9 2  = ~S , ,  o'q, = q(x~)(qZ(x~))  -1/2. (79) 

As mentioned already, this transitional approximation to M uniformizes the 
mutual coincidence of a crossing and a turning point. But this uniformization is 
only partial since the second crossing must stay well separated from the first one. 

There is a second type of transitional approximation to (70), which uniformizes 
the coincidence of the two crossings t] = t~ but for t2a away from turning points, 
i.e. t] # 0. To derive it, we decompose the integration domain of (70) into the 
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subdomains N• put 
3 

s 
f(t) = g•  = ~ - / 3 •  + o~• 

and determine the unfolding parameters/3• a• according to 

f(tb, a) = g+(+',/-~) = Sb, a 

f(--tb,a) = g - ( + ~ - )  --" --Sb,a. 

H. Kriiger 

(8o)  

(81) 

(82) 

Expanding the transformed integrand of (70) linearly in s (as this has been done in 
t in Eq. (61)), the leading approximation results 

F2k --~ dl cos as4i(- /3)-  d2 sin a~4i'(-/3) (83) 

/3 11/4 ~ 1/4 
de= t~k[t~ (t 2 -  t2)2J + t:k[t: ( t ~  t2) 2 ] (84) 

4/3 2k ]1 /4  t 2k 1/4} 
d2 3(/~--~_/T~{ta [t:(t~-~_t:)2j - [,~(t~flt2)2] _ (85) 

/ 3 3 =  9 1 + i6( fa-- fb)  2, OZ=g(fa fb), fa, b----f(ta,b)=Sa, b, (86)  

which obviously is symmetric if a and b are exchanged. With Eqs. (67) and (68), 
Eqs. (83)-(86) lead to 

M-~ (h. +hb) cos a ~/i (--/3) 4/3(ha --hb) sin a ~1i'(--/3) (87) 
3(S~ --Sb) 

,~,~ = ~m (~i (n))l/~ /3 1/4 

(Xa, b)O.qa,b[k2,2(Xa, b)(U~(2,b)__Utl (88)  

2 -1/2 /33=~(S~-Sb) 2, a =�89 ~rq,.b=q(x~,b)(q (X~,b)) , (89) 

where according to (37) 

I? F Sa, b = dx kl(x) - dx k2(x). (90) 
12 3 

The approximation (87) is a uniform generalization of formula (A-25) in Ref. [1], 
which does not contain the s/i' (-/3) term of (87). As indicated above, Eq. (87) 
uniformizes the merging of the two crossings x~ and xb. But this must happen well 
separated from all other turning points. If this is not guaranteed, recourse must be 
made to Eqs. (67)-(71) which cover all the transitional cases and the SWT caustic. 

5. Numerical Calculation of Generic Integrals with Odd Determinacy 

The idea of the method can be explained most distinctly at the simplest case, 
Airy's integral, 

+oO 1 I- ei((ta/3)+zt)" ~li ( z ) = - ~  dt (91) 
oo 
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The shift into the complex t-plane t ~ t + ia, a >- 0 gives 

sCi ( z ) = e  ~3/3~-~z 1 I ~co 2---~ J_ dte  -~t2+iE~t~/3~+~z-~2~tl, ~ >- O. (92) 
o o  

In contrast to Eq. (91), the integrand of Eq. (92) is ideally suited to apply the 
summation formula of Poisson, see Ref. [10] 

i woo +oo 
d t ~ ( t ) = h  ~. ~(h[n+�89 

co n = - c o  

+co ~ C O  
-- E (1-- ~mo)(--1) m dtq~(t) e (i/h)2~t. (93) 

m=--co co 

After decomposing (93) into even and odd parts we thus obtain 

21r 
d i ( z ) = h  ~ O(h[k+�89  p=--s h > 0 ,  (94) 

k=O 

t ) ( t )  = "rr - 1  e (~3/3)-'~z-'~t2 Cos +t(z  --o~ 2) , a t>0 (95) 

A(p)= ~ (-1)~R(rp), (96) 
r = l  

R (p) = e~P sgi (z + p ) + e-"P sgi (z - p ) = R ( -p) .  (97) 

Eq. (94) is an exact trapezoid summation formula for d i  (z). How accurate is it to 
neglect A on the right hand side? This question may be answered by an asymptotic 
estimate of (96) for large positive values of p = 27r/h > 0. If z in (97) is real, then 
]sCi (z)] < 1 and 

R ( p ) < e - ~ P  +e~P d i  (z +p). 

Assuming further that p + z > 10, the asymptotics of sgi (z +p)  yields 

R (p) < e -~p + (z +p)-l/4 e~p ~(z+p)3/~, (98) 

and we note that for any given z, and a > 0, there is always a steplength h with 
0 < h < 1 such that to any desired accuracy, Eq. (94) may be replaced by the 
asymptotic trapezoid formula 

N 
sli ( z ) = h  Y. ~(h[k+X]). (99) 

k=0  

The cutoff value N is determined by the rate of decreasing of tp, i.e. by the value of 
a in Eq. (95). For instance, if one choses ~ = 1, h = 2~r/26 -~ 0.242, N = 24, Eqs. 
(95) and (99) may be used to calculate sgi(z) in the range - 1 0  ~< z ~< 0 with an error 
A < 3.10 -8, and for z/> 0 this error even decreases to A < 5.10 -12. 

As a further application of this summation method, we discuss the particular SWT 
integral 

F (z )  = ~-~ dte  i~(~/5~+~'~, z = z * ,  (100) 
co 
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which is needed in the next Section for calculating the spectrum of a SWT caustic. 
2 i x / z = - t  2 in (70), we obtain from (77) and (83) the transitional With ta = 

approximations 

- 3  "x/6 
2~-z) [s~i ((1)+sCi (-(1)], (1 = (3~65)1/3(--Z)5/6 , for z < 0  

,.~1/2A8,1/12 -1/6[ [~' \  sin(Tr/8) . ] 
F ( z ) = '  z IN) z [ c o s ~ )  cosas~i(~'2) , ~ 2 s m a s g i ' ( ~ ' 2 ) j ,  

~ )  z 
(101) 

23/2Z5/4 ~ / 1 8 ~ 1 / 3  5 / 6  
a = ~  ( 2 = t ~ )  z f o r z > O  

and hence the primitive asymptotic limits 

4 5 / 4  'W  
F ( z )  . . . .  ~ (21r)-'/2[z] -3 /Ss in  (g]zl + ~ )  (102) 

f ( z )  , (2~)-1/2z -3/8e -(23/2/5)zs/4 COS - - z  - ~ )  (103) 
z --~ q- oo  

which could have been derived also directly from Eq. (70) by application of the 
ordinary stationary phase or saddle point method. Eqs. (102) and (103) are now 
used to write down the error estimates of the trapezoid formula for Eq. (100). The 
shift t ~ t + ia, a > 0 in (100) leads to the definition 

5 

- - 1 - - ( a s / 5 ) - - z ~  [5_2a2t3  ] r  zr e cos +(c~4+z)t (104) 

and the Poisson sum 

2~" 
F ( z )  = h ~ ( h [ k  +�89 p = - - ,  

k=0 h 

where 

h>0, (105) 

S(p)= Z (-1;T(rp) (106) 
r = l  

T ( p  ) = e~PF(z  + p ) + e- '~PF(z - p )  = T ( - p ) ,  a >0.  (107) 

Since z is real in Eq. (100) we obviously have IF(z)l < 1 and with (103) we get 

T ( p )  < e -~p +exp (ap - (23/2 /5) (z  +p)5/4) 
(2~.)1/2(Z +p)3/8 , a > 0 (108) 

as an error estimate in the asymptotic trapezoid formula 

N 

V ( z ) ~ - h  Y~ q~(h[k+�89 (109) 
k = 0  

where ~ is defined by (104). As an application of (109) let us discuss the value 
F(0) = ~--1/5-4/5 sin (2~r/5). We put a = 1 and the cutoff in the sum (109) is at 
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[r  lo. For h = 0 , 2  we obtain from (109) F a (0 )=0 ,  383508423, 
N,  = 13 and Ta(p)< 2,575 �9 10 -6 is the estimate (108). For h = 0,1 we find from 
(109) Nb = 25, Fb(O)= 0,383506701, which is the exact value above up to and 
including the ninth digit. T(p) satisfies in this case Tb(p)< 5,684" 10 -18. The 
difference IF,(0)-Fb(0)[  is bounded by Ta(p) as it must. 

These few examples demonstrate both the simplicity and the general applicability 
of the method developped in this Section. 

6. Caustics in Bound-Continuum FC-Transitions 

A caustic is normally attributed to a striking optical phenomenon:  sharp, bright 
curves to which the light rays are tangential. Caustic means the burning due to the 
large intensity in these regions. All types of wavefields may give rise to caustics if 
in the corresponding oscillatory integral representing the field amplitude two or 
more critical points come close or coincide, see Ref. [11]. The same behaviour of 
the stationary points in Eq. (20) also leads to more or less pronounced peaks or to 
oscillatory structures in the corresponding FC spectra. We have four critical points 
which may come close or coincide: two of three turning points and two crossing 
points. Consequently three types of caustics may occur: 
i) a turning point-crossing point caustic, well separated from the other crossing 
point, see Fig. 1, 
ii) a SWT caustic, due to the confluence of two turning points with two crossing 
points to a fourfold critical point, see Fig. 2, 
iii) a crossing point - crossing point caustic, well separated from all turning points, 
see Fig. 3. 

In the immediate vicinity of the confluence points of caustics i) and ii), the action 
integrals (37), (50) may be expanded according to (see Figs. 1 and 2) 

2 1 
Sa'b =3 (U~b. a 

where 

u~b~ kb,a 15 L(u;ba) ~ 
U~b,a ] 5 +O(k7 ) 3 kb,a (U lb, a) / 

(11o) 

kb,a : kl(Xb,a) : k2(Xb, a), 

and (see Eqs. (16)-(17)) 

U,b,a = U,(Xb, a), Uka  = Ul(Xb, a), 

(111) 

~ k  = ~ (xk), Vlk = Vi(xk), etc. 

(112) 

Keeping in case i) only linear contributions to the expansion of Xe at the turning 
point x2, see Fig. 1, we find 

k} 2mV~2 ( E 2 -  V22) , , 
h2(g~2 _ V~2) , l~lib=bli2, (113) 
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Fig. 1. 

E2 

Fig. 3. 

Vl (x)- E1 

V{ (x c) : V~ (x c ) 

X X c X 2 

1 

~ V I (x) -E  1 

V{(xl): V:~(xl) 
_ ~ •  x~/ 

Fig. 2. 

Fig. 1. The turning point-crossing point 
caustic i) 

Fig. 2. The swallowtail caustic ii) 

Fig. 3. The crossing point-crossing point 
caustic iii) 

and in case ii) by quadrat ic  approximat ion  at X1, since u'j1 (x) = u~ (xl), see Fig. 2, 

, / 2 u 2 1  , , ,, k2a =T6u11 ,  6 = ~ , . . . .  - ~-+Su (114) U2b,a  l ' l lb,  a 11. 
U l l  - - U 2 1  

If the crossing point  xa is far in the forbidden region on the left hand side of x3 as in 
Fig. 1, we obtain f rom Eqs. (78), (79), (110) and (113) for  the FC transit ion 
ampli tude in the immedia te  vicinity o f  the caustic i) the expression 

( V22_~o- Ezt/ M --- Mo sqi t 
\ 

(115) 
3 h2(v~2 - v ~ 2 ) v ~  

eo - 2mV'12 ' 

,x I Mo = t 1 t )}  /.z i, 2) 2 12 22 V 1 2  - V 2 2  
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As a typical FC-spectrum to (115), the function Io(z)= 601 agi (-z)l  e is plotted 
versus z in Fig. 4. Since Eq. (115) is only valid in the vicinity of E2 = V22, this 
expression should only be used to determine say V22 and So from the position and 
width of the dominant peak in Fig. 4. 

Now we discuss the FC spectrum of the SWT caustic, case ii) see Fig. 2. We assume 
that the confluence point in Fig. 2 is the turning point Xl, uffxl) = 0, which only 
can happen for some particular vibrational energy E1 = El(n) if V[ (X1) = V 2  (Xl) ,  

These two conditions are simultaneously satisfied only for rather particular shapes 
of the tWO potentials Vl(X) and V2(x). In general however one may approach this 
exact coincidence situation very closely. If xl is an exact coincidence point, Eqs. 

t/ (114), (110) and b/ib.att ~ / ' / i l  yield O = -1  in Eq. (55), which implies w = -1 .  From 
(56) and (52) we find 

N 
2 2 --1 2 2 / -r=tatb = ( V 2 1 - E 2 ) 8 1  , ta+tb = 0  

h 4 
5 I 7 1 2  [ T T I I  ~ T l l  \ " 

81 =-~m2 V l l k V l l - - v 2 1 ) S l g  n ( V t l l )  J 

(116) 

and from Eqs. (67)-(71) 

M ~ -  MIF(V21-~I 1 E2) 

_ _ 2/5 
J E t n  1 / 2 n  3/5( m ) ,, ,, 1-1/5 M I = (  i ( ) )  o-1/z(xl)2 ~-~ [W~lJ-2/5[Wll-W21 

(117) 

Io(z) 
16 - ~  

12-  

8" 

2 

I 

-2 -1 1 2 4 6 8 9 lo 

Fig. 4. The spectrum of a turning point-crossing point caustic i) [o(z) = 601Ji (-z)l: 
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114 

Fig. 5. The spectrum of a swallowtail caustic ii) Ii(z) = 60tF(-z)[ 2, F(z) is defined by Eq. (100) 

where the function F ( z )  is defined by Eq. (100). In Fig. 5 the function I i ( z ) =  
601F(-z)] 2 is plotted versus z as a FC-spectrum, typical for a SWT caustic. We 
note, that in contrast to Fig. 4, the spectrum corresponding to Eq. (117), Fig. 5, 
shows oscillations even on the left hand side of main peak. From the asymptotic 
expression (103) we conclude that the number of these oscillations is infinite in 
principle, but they are exponentially damped. 

As the last case we study the caustic iii). If the two crossing points xb and Xa are 
situated close enough at the coincidence point xc, see Fig. 3, a quadratic 
approximation similar to Eq. (114) holds. The convergence of (110) however is 
too slow since the turning points are too far away from xc. We therefore expand 
the action integrals Sb.a, Eq. (37), for fixed E1 with respect to E2 at 

E2c = V2c + E l -  Vlc, Vic = V i ( x~ ) ,  (118) 

where xc is defined by 

V ~  =- V~ (x~) = V.~ (xc)--- V~.  (119) 

From Eqs. (87)-(90) we finally obtain just formula (A-25) of Ref. [1], viz. 

M =M2 cos a~ ~ i  (-/3~) 

M 2 = ( 4 ~ )  2/3 (120) [ V ~  - , 1 ,  ( - 1 /31~ ,  , / z  , ,'1eL t~l(n))  o'ciz(x~), 

I? I? a~ = d x  kl(X)- d x  k2(x) (121) 
1 3 

~ = k l ~ ( k l c - k 2 c ) 3  tr t! 
u . . . . .  ki~ = k i ( x c ) ,  ui~ = u i  (xc) .  (122) 

l c  - -  U 2 c  



Franck-Condon Factors Valid at 4 Coinciding Critical Points 115 

I2(z) 
16 

12 

10 

8 

6 

-1 0 2 3 z 

Fig. 6. The spectrum of a crossing point-crossing point caustic iii) I2(z) = 60 cos 2 (10-7z)] ~r (-z)t 2 

In the  i m m e d i a t e  vicini ty  of E2-= E2c we find, ke e p ing  l inear  t e rms  in E 2 - E 2 c  
only,  

rn r ~ dx 
(123) 

E 2 c - E 2  3 h2 
tic e2 - - ( E l -  " ' V "  - " - - ,  = Vlc)(  lc V2c). (124) 

82 m 

A typical  spec t rum co r r e spond ing  to Eq.  (120) is shown in Fig. 6. The  in tens i ty  
choosen  in Fig. 6 is 12(z) = 60 c o s 2 ( 1 0 -  7 z ) l J i  ( - z ) [  2. A g a i n  we no te  osci l la t ions  
on  the  long wave leng th  side of the  ma in  peak .  N o w  these  osc i l la t ions  are  even 
m o r e  r ap id  as in the  case of the  S W T  caustic,  Fig. 5. Passing f rom the  caust ic  i) to 
the  caust ic  iii), we  m a y  say tha t  the  S W T  caust ic  ii) is a t r ans i t iona l  case, which  jus t  
shows the  b i r th  of  the  r ap id  osci l la t ions  on  the  way f rom the  C o n d o n  ref lect ion 
s p e c t r u m  Fig. 4 to the  m o d u l a t e d  con t inuum spec t rum Fig. 6. 

H e r e  we end  our  m o r e  qua l i ta t ive  s tudies  of b o u n d - c o n t i n u u m  F C  factors .  The  
prac t ica l  usefulness  of this fo rma l i sm is obvious  and will be  d e m o n s t r a t e d  by  
app l i ca t ion  to the  analysis  of e x p e r i m e n t a l  data .  
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